NSym ↪ → Q ∞ is not a Hopf map Aaron
نویسنده
چکیده
In this note, we show that there is no Hopf algebra structure onQ∞, the algebra of pseudo-roots of noncommutative polynomials, which extends the one existing on NSym (one of its famous subalgebras).
منابع مشابه
N ov 2 00 4 NSym →֒ Q ∞ is not a Hopf map
In this note, we show that there is no Hopf algebra structure onQ∞, the algebra of pseudo-roots of noncommutative polynomials, which extends the one existing on NSym (one of its famous subalgebras).
متن کاملNoncommutative irreducible characters of the symmetric group and noncommutative Schur functions
In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...
متن کاملNoncommutative Symmetric Functions and the Inversion Problem
Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...
متن کاملNoncommutative Symmtric Functions and the Inversion Problem
Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...
متن کاملSkew Quasisymmetric Schur Functions and Noncommutative Schur Functions
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...
متن کامل